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Abstract 

In this paper, we measure the energy efficiency in residential energy consumption using 

a panel dataset comprised of 40,246 observations from US households observed over 1997-

2009. We fit a stochastic frontier model of the minimum input of energy needed to meet the 

level of energy services demanded by the household. This benchmarking exercise produces a 

transient and a persistent efficiency index for each household and each time period.   

We estimate that the US residential sector could save approximately 10% of its total 

energy consumption if it reduced persistent inefficiencies and 17% if it was able to eliminate 

transient inefficiencies. These figures are in line with the assessment by McKinsey (2008, 2009, 

2013) and greater than those indicated by the Electric Power Research Institute (2009). They 

suggest that savings in energy use and associated emissions of greenhouse gases (and other 

pollutants) may benefit from both policy measures that attain short-run behavioral changes 

(e.g., nudges, social norms, display of real-time information about usage, and real-time pricing) 

as well measures aimed at the long run, such as energy-efficiency regulations, incentives on 

the purchase of high-efficiency equipment and incentives towards a change of habits in the 

use of the equipment. 

 

JEL Classification: D, D2, Q, Q4, Q5. 

Keywords: US residential energy demand; efficiency and frontier analysis; Household data; 

CO2 emissions reductions. 
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1. Introduction 

Government statistics indicate that in the US a household living in a 

single-family home uses on average about 90 million Btu each year for space 

and water heating, air conditioning, refrigerators and other appliances, and 

other energy services. The average household living in a single-family home 

generates about 12 tons of carbon dioxide a year (EIA 2012).  

This is because more than 80% of the energy end-use consumption 

comes from fossil fuels. The residential sector is producing more than 20% of 

the total annual U.S. carbon dioxide emissions. It is widely believed that 

improving energy efficiency in US homes may yield significant reductions in 

CO2 emissions.1   

One important question is just how large the potential of energy saving 

in the residential sector is. Electric Power Research Institute (2009) surveys 

several earlier studies, which indicate that the attainable potential energy 

savings range between 7 and 21%.  McKinsey (2009, 2013) estimates the 

potential energy savings to be approximately 20-30%. All of these studies use 

an economic-engineering approach based on bottom-up models.  

 Such promising energy-saving and emissions-reducing potentials have 

called attention to the important task of assessing each building or housing 

unit’s current energy efficiency level. In the US, for example, the Energy 

Efficiency Improvement Act of 2015 requires that model leasing provisions be 

developed and published to encourage building owners and tenants to use 

greater cost-effective energy efficiency measures in commercial buildings, and 

spurs the benchmarking of energy usage in commercial buildings.2 In the 

residential sector, schemes are available to get new homes EPA Energy-Star 

certified and to offer low-cost or free energy audits to old and new homes. While 

these are voluntary undertakings, New York City’s Local Law 84 mandates that 

                                                 
1 See, for example, President Obama’s strategy at https://www.whitehouse.gov/the-press-office/2015/08/03/fact-

sheet-president-obama-announce-historic-carbon-pollution-standards (last accessed 31 August 2015). 
2 The Act also requires the General Services Administration (GSA, a federal agency) to develop policies and 

practices to implement the measures for the realty services provided by GSA to other government agencies.  
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the owners of specific buildings, including large residential buildings, report 

their annual energy usage figures, which are then posted as weather-

normalized BTUs per square foot, along with CO2 emissions and Energy Star 

score.3  

 In many European countries, benchmarking is routine even for homes 

and follows government-prescribed protocols. In the UK government’s Standard 

Assessment Procedure and the Irish Building Energy Rating, typical outputs 

include estimates of energy and CO2 emissions per square meter, and fuel-cost 

based energy ratings. These are subsequently used to assign the appropriate 

energy label to each home, which is mandatory for real estate transactions.  

Assessments are based on engineering calculations where the typical inputs 

are home size, structure, types of fuels, and presence and characteristics of 

insulation, and standard assumptions are made in terms of appliance usage 

rates, family size and composition, etc. so that the efficiency ratings are 

independent of the home’s current occupants and their usage patterns.4  

There are obvious limitations to these assessments. For starters, they do 

not take behaviors into account. Second, they compute a home’s energy 

intensity, and the ranking of units or structures may change considerably when 

one accounts for the vintage of the structure, the activities that take place in 

it, the size and composition of the household and the energy-using capital stock 

in the home.5  

In this paper we circumvent these limitations by measuring the level of 

efficiency in the use of energy using an approach based on microeconomic 

production theory and on estimating an energy demand stochastic frontier 

                                                 
3 See http://www.nyc.gov/html/gbee/html/plan/ll84_scores.shtml (last accessed 27 August 

2015).  
4 See https://www.gov.uk/guidance/standard-assessment-procedure and 

http://www.seai.ie/Your_Building/BER/BER_Assessors/Technical/DEAP/ (last accessed 27 

August 2015). 
5 Filippini and Hunt (2012), for example, note that the ranking of countries in terms of energy 

intensity of GDP changes dramatically once a proper estimate of energy efficiency is obtained 

that takes into account the composition of economic activities within the country’s economy 
and other factors.  
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function. This frontier represents the minimum energy input required to meet 

the desired demand for energy services on the part of households (see Filippini 

and Hunt, 2015b).  

Stochastic frontiers are often used to study the productivity of private 

firms, utilities and government agencies (Fried et. al., 2008), but have rarely 

been applied to end users in the residential sector. Some recent studies analyze 

the level of energy efficiency for the whole economy, while others analyze the 

energy efficiency for the residential sector.6 The majority of these studies use 

aggregate data. Filippini and Hunt (2011) estimate a stochastic energy demand 

frontier function for the entire country with an unbalanced panel of 29 OECD 

countries from 1978 to 2006. Zhou et al. (2012) fit a Shephard energy distance 

function using stochastic frontier analysis and cross-section data for 21 OECD 

countries for 2001. Lin and Du (2013) employ the Shephard energy distance 

approach to examine the efficient use of energy across China’s 30 

administrative regions over 1997-2010.  

We are aware of only three studies that measure the energy efficiency in 

the residential sector using stochastic frontier methods. Two use aggregate 

data at the state level (Filippini and Hunt, 2012) or by country (Filippini et al., 

2014), and one uses data at the household level (Weyman-Jones et al., 2015, 

which is based on 3500 households in Portugal).  The latter is closely related 

to our paper, but differs from it in that it i) uses a parsimonious model with 

only two explanatory variables, income and household size; ii) treats electric 

heating and electric water heating as determinants of the level of electric 

efficiency, and iii) is based on a cross section, and as such it is unable to 

                                                 
6 Earlier empirical work has used stochastic frontiers for other sectors and the whole economy. 

For instance, Buck and Young (2007) use a stochastic frontier model to estimate the level of 

energy efficiency of a sample of Canadian commercial buildings, whereas Filippini and Hunt 
(2011) focuse on the economy-wide level of energy efficiency of OECD countries. Zhou et al. 

(2012) estimate a stochastic frontier model using an energy distance function for 21 OECD 

countries using 2001 data. Boyd (2008) estimates an energy input distance function using data 

on the energy consumption of 37 firms fron 1992 to 1997.  Zhou and Ang (2008) use DEA, a 

nonparametric approach to examine the energy efficiency performance of 21 OECD countries 

over 5 years (1997-2001). Wei et al. (2009) use DEA and panel data to estimate the level of 
energy efficiency of Chinese provinces. 
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address unobserved heterogeneity.  None of these three studies makes the 

distinction recently introduced by Tsionas and Kumbhakar (2012) between 

persistent and transient efficiency. 

The main goal of this paper is to advance the state of the art by measuring 

the level of persistent and transient energy efficiency in US households.  We 

estimate an energy input demand frontier function at the household level to 

isolate energy efficiency.  We use a large panel dataset at the household level, 

and explicitly control for income and energy price, household size, weather, 

regional effects, and a common “Underlying Energy Demand Trend” (UEDT), 

that captures both exogenous technical progress and other exogenous factors. 

We use the estimation results to compute the potential decrease in CO2 

emissions associated with an improvement in the level of energy efficiency in 

the US residential sector.   

This paper contributes to the literature in three ways. First, we present 

the first empirical analysis of the level of energy efficiency of the US residential 

sector using household-level data, a large panel dataset, a stochastic frontier 

model and a rich specification.  The stochastic frontier approach allows us to 

control for dwelling and household characteristics, taking us a step further 

than the mere energy intensity of a dwelling. The frontier is estimated with 

actual consumption of electricity and natural gas—not engineering-imputed 

quantities—and thus reflects the structure as well as the behaviors of the 

occupants. 

Second, we use a novel econometric approach by Filippini and Greene 

(2015), which decomposes the level of energy efficiency into a transient and a 

persistent part. Third, we provide an assessment of the potential energy and 

CO2 savings in the US residential sector attributable to improving energy 

efficiency using a completely different approach than earlier studies.  

Briefly, we find that the energy efficiency of US homes could be 

improved by up to 17% if it was able to remove transient inefficiencies and 10% 

if it was able to remove permanent inefficiencies. These findings emphasize the 
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importance and potential of policies aimed at short-run behavioral changes 

(nudges, social norms, information, real-time pricing, etc.) as well as measures 

designed for the long-run, such as energy efficiency regulations and incentives 

towards capital and equipment replacement.  

The remainder of the paper is organized as follows. Section 2 presents 

the residential energy demand model. The data and the different econometric 

specifications are introduced in Section 3.  The econometric results, the 

estimated level of energy efficiency and the CO2 potential reductions are 

presented in Section 4. Section 5 concludes.  

 

2. A Model of Energy Demand  

People do not demand energy per se: Rather, they demand energy 

services such as a warm home, cooked food, hot water, lighting, etc., and the 

demand for energy is simply a derived demand. Within a basic household 

production model, households purchase inputs on the market such as energy 

and capital (appliances, electronics, light bulbs, heating and cooling systems) 

to produce energy services, which appear as arguments in the household's 

utility function (Flaig, 1990; Filippini and Pachauri, 2004; and Alberini and 

Filippini, 2011).7  

Within this theoretical framework, it is possible to derive the optimal 

input demand functions for energy and capital (Flaig, 1990 and Alberini and 

Filippini, 2011). Conventional theory assumes perfect knowledge of technical 

relationships and prices, and results in a situation characterized by overall 

productive efficiency (Farrell, 1957) in the production of energy services. In 

practice, however, inefficiencies in the use of the inputs, i.e. combinations of 

inputs that do not minimize costs, are likely.  

Filippini and Hunt (2011) propose a non-radial input specific measure 

of efficiency in the use of energy based on the difference between the optimal 

                                                 
7 Approximately 40% of the energy used in a household is for washing, cooking and lighting, 

whereas space heating, water heating and air conditioning account for 60%.  
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use of energy (E*, that which minimizes input costs) and the observed use of 

energy.8  In this paper we follow this approach and estimate a measure of 

efficiency in the use of energy based on the estimation of a single conditional 

input demand frontier function, i.e., the demand function for energy.9  This 

function shows the minimum amount of energy that is necessary to produce a 

given level of output (energy services), given the technology, input prices and 

other factors.  

In our empirical work, which uses micro-level data from US 

households, we posit the following household energy demand function: 

 

 E =f (PE, PC, Y, W, X, T, EF)               (1) 

 

where E is household energy consumption, PE is the price of energy (in dollars 

per thousand BTU), PC is the price of capital (i.e., the price of appliances and/or 

heating and cooling equipment), Y is income, W is weather, X is a vector of 

house and household characteristics thought to influence the energy services 

demanded by a household, and T is a vector of time dummies.  

In practice, we are forced to leave PC, the price of energy-using capital, 

out of equation (1). We assume that the price of equipment is roughly the same 

across the US, except for the state sales tax, which is captured into the state 

or city dummies (see below).   

Vector X includes the square footage of the dwelling, the number of 

rooms, household size, and the age of the home. It also includes GAS-HEATit, 

a dummy for a natural gas heating system, GAS-HEWit, a dummy for gas water 

                                                 
8 As discussed in more detail in Filippini and Hunt (2015), there are three approaches that 

can be used to estimate the level of efficiency in the use of energy, namely the input 

requirement function, the sub-vector input distance function and the energy demand frontier 

function. All these approaches are based on a non-radial notion of efficiency measure first 

devised in Kopp (1981). 
9 In theory, it would be more appropriate to estimate a system of input demand functions. In 

practice, however, we do not have detailed information on the stock of appliances, and 

heating and cooling systems, or the breakdown of energy use by type of equipment, in our 

dataset.   
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heating, and GAS-DRYit, a dummy for gas clothes dryer. Air conditioning is an 

important driver of electricity demand, and we capture it using two dummies—

one for window-unit AC ( AC  ROOMit), and one for central AC ( AC 

CENTRALit). Dummy indicators for the number of floors (DFL1 , DFL2 , DFL3), 

and the metropolitan area (DCITYj) are also included.  

Equation (1) indicates that energy use depends on EF, the unobserved 

level of energy efficiency of the household. A low level of energy efficiency 

implies an inefficient use of energy (“wasted energy,” as discussed in Filippini 

and Hunt, 2015b). EF is not directly observed. It is estimated as a regression 

residual, and distributional assumptions about the error terms in the 

stochastic frontier regression model are usually required for EF to be identified 

from the data.  

We estimate EF using the stochastic frontier function approach (SFA) 

by Aigner et al. (1977).  In our application, the energy input demand frontier 

function reflects the minimum level of input used by a household for any given 

level of energy services; hence, the difference between the observed energy and 

the cost-minimizing energy demand represents productive inefficiency, which 

implies the presence of both technical as well as allocative inefficiency.10 As 

discussed by Schmidt and Lovell (1979) and Filippini and Hunt (2011), the sign 

of the allocative efficiency in an input demand function can be positive or 

negative. In other words, it is possible to observe the under- or over-use of an 

input. Which situation dominates in attaining a cost-minimizing input 

combination (reduction of energy and increase of other inputs, or increase of 

energy and reduction of other inputs) is an empirical question. However, it is 

generally assumed that households tend to overuse, rather than underuse, 

energy.  

                                                 
10 See Kumbhakar and Lovell (2000, p. 148) for a discussion on the interpretation of the 

efficiency in an input demand function. 
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The classical SFA approach proposed by Aigner et al. (1977) is based on 

the assumption that the level of inefficiency in the use of energy efficiency can 

be approximated by a one-sided non-negative term.  We recast equation (1) 

using a log-log functional form and panel data: 

 

)(lnlnlnlnln itittititWitYitCitpit uvHDDCDDYPCPEE  γTβx       (2) 

 

where HDDCDD is the sum of the heating and cooling degree days in the 12 

months prior to the date of the survey and the other variables are as before. 

 The error term in Equation (2) is comprised of two independent 

components.  The first component, vit, is a symmetric disturbance capturing 

“noise” and, as usual, is assumed to be normally distributed.  The second part, 

uit, is interpreted as an indicator of the inefficient use of energy (“waste 

energy”).11  It is a one-sided non-negative random disturbance term that can 

vary over time and is assumed to follow a half-normal distribution.12   

In equation (2) we are assuming that the level of efficiency in the use of 

energy varies over time and is comprised of just one element. However, with 

panel data it is possible to think of input-specific efficiency as comprised of two 

parts—a persistent one and a transient one (Tsionas and Kumbhakar, 2012, 

and Filippini and Greene, 2015). The persistent part is related to the presence 

of structural problems in the production of energy services or systematic 

behavioral failures in minimizing costs for any given level of energy 

consumption.  The transient part may be due to the presence of non-systematic 

minimization problems that can be solved in the short term.   

                                                 
11 This indicator provides the level of inefficiency in the use of energy and varies from 0% to 

infinity. From this indicator it is also possible to compute an indicator of the level of efficiency 

in the use of energy, the  energy efficiency, which varies from 0 to 100%.  
12 It is sometimes argued that imposing a distribution is a strong assumption for EF, but it 

does allow the identification of the efficiency for each household separately. The half-normal 

distribution is standard in the production frontier literature. Alternative distributions are the 

truncated normal or the gamma distribution. See Kumbhakar and Lovell (2000, p. 148) for a 

discussion. 
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In the next section we explain how we specify and estimate variants of 

the basic stochastic frontier model by Aigner et al. (1977) using panel data. 

Some of these models include only a time-varying (transient) part. Others 

include only a time-invariant (persistent) indicator of energy efficiency, and 

others yet contain both. 

   

3. Data and the Econometric Specification  

A. The Data 

Our data come from the American Housing Survey, which has been 

conducted by the Department of Housing and Urban Development at regular 

intervals since the 1970s. The American Housing Survey (AHS) is a longitudinal 

study that follows dwellings (not households). New homes are added to the 

sample or terminated to mirror new construction and demolitions.  

The AHS gathers information about the structural characteristics of the 

dwelling, the occupants’ tenure status, the price paid for the home (or the rent 

amount), maintenance costs and fees, utility and energy bills, renovations done 

to the home in the last two years, mortgage and insurance, sociodemographics 

of the occupants, and subjective perceptions of the quality of the home and the 

neighborhood. The AHS is comprised of the national survey, which takes place 

every two years and is a longitudinal study, and the metro surveys, where 

cross-sectional samples of homes are drawn from selected cities.  

The public-use version of the AHS provides city identification only if the 

home is located in a metropolitan area with population 100,000 or more. As in 

Alberini et al. (2011), we selected these observations from the 1997, 1999, 

2001, 2003, 2005, 2007, and 2009 waves,13 matched them with electricity and 

gas prices measured at the city level in each year, and further merged with the 

heating degree days and the cooling degree days in that metro area in the 12 

months prior to the date of the survey. Attention is restricted to homes that i) 

were present in the AHS for two or more years, and ii) are in buildings with no 

                                                 
13 These were all national surveys. 
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more than two dwelling units.14  Our final sample is comprised of 40,246 

observations. Descriptive statistics of the key variables are presented in Table 

1. 

Table 1. Definition of Variables and Descriptive Statistics. N=40246 

Variable  Label  Mean Std. Dev. 

Energy demand, thousand BTU  E 9276127.3     5356257     

Price of energy per thousand BTU (2009 dollars) P .017527       .007326 

Income of the households in (thou. 2009 dollars) Y 88018.52      93523.38 

heating degree days  

(base: 65 F) 
HDD 3461.954 2235.537 

Cooling degree days  

(base: 65 F) 
CDD 1603.495 1245.866 

Household size SIZE 1855. 1109.512           

Number of rooms ROOMS 6.386647      1.704164           

Number of people PERS 2.857923      1.553322           

Age of the home AGEH 42.12394        21.789           

Floor 1 DFL1 .47324        .49929 

Floor 2 DFL2 .308055       .461695           

Floor 3 DFL3 .195398       .396512 

Gas heat GAS-HEAT .749441        .43334           

Room air condition ROOMAC .194032       .395458           

Central air condition CENTRALAC .672116       .469448           

 

 

B. Specification of the Stochastic Frontier Model  

In this paper, we employ three alternative stochastic frontier models for 

panel data. The first is the basic version of the random effects model by Pitt 

and Lee (1981) (REM hereafter), the second is the so-called true random effects 

model (TREM hereafter) proposed by Greene (2005a, 2005b) and the third is 

the generalized true random effects model (GTREM) (Colombi et al., 2014, and 

                                                 
14 This includes single-family homes, and duplexes/townhomes with at most two dwelling units. As of 2009, these 

structures accounted for 71.3% of the total dwelling units in the United States (see 

http://www.census.gov/compendia/statab/2012/tables/12s0989.pdf, last accessed 27August 2015). 
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Filippini and Greene, 2015). As explained in table 2, these specifications differ 

from one another for the components subsumed into the error term in (2).  

The Pitt and Lee REM interprets the individual random effects as 

inefficiency rather than unobserved heterogeneity as in the traditional 

literature on panel data models. This model provides information on the 

persistent part of the inefficiency in the use of energy. One issue with the REM 

is that any time-invariant group-specific unobserved heterogeneity is 

considered inefficiency. As a result, this model tends to underestimate the level 

of persistent efficiency in the use of energy.  

The second model used in this empirical analysis is the TREM by Greene 

(2005a and 2005b). This model extends the SFA model in its original form 

(Aigner, et al., 1977) by adding an individual random effect in the model. With 

the TREM the constant term, , in equation (2), is replaced with a series of 

household-specific random effects. This model has the advantage that it 

controls for unobserved heterogeneity that is constant over time. However, any 

time-invariant component of inefficiency is completely absorbed in the 

household-specific constant terms. Therefore, the TREM tends to 

underestimate the level of inefficiency. Generally, the TREM provide 

information on the time-varying part of the inefficiency. 

The third model, the GTREM, offers the possibility to estimate at the 

same time the persistent and transient part of inefficiency. Colombi et al. (2014) 

provide a theoretical construct that distinguishes between persistent and 

transient inefficiency. Filippini and Greene (2015) develop a straightforward 

empirical estimation method for the GTREM.  

As shown in table 2, the GTREM is obtained by adding to the TRE model 

a time persistent inefficiency component in the time varying stochastic frontier. 

Therefore, this model includes a four-part disturbance with two-time varying 

components and two time-invariant components. One of these components 

captures the persistent inefficiency in the use of energy that may be due to 

regulation, investments in inefficient appliances or buildings or habits that 
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tend to waste energy. The other component captures the transientinefficiency 

that may be due to behavioral aspects or non-optimal use of some electrical 

appliances or heating systems. In the short run, even in the presence of some 

inflexibilities, a household may be able to adjust the use of appliances and 

heating systems. 

 

Table 2: Econometric specifications of the stochastic cost frontier: 
Effects, Error Term and Inefficiency 

 

 

 
Model I 
 

REM 
 

 
Model II 
 

TREM 
 

Model III 
 

GTREM 

household  

effects i 
 N(,w

2) N(,w
2) 

Full 
random 
error it  

 

it=ui+vit 

ui~N+(0,u
2) 

vit~N(0,v
2) 





it=wi+uit+vit 

uit~N+(0,u
2) 

vit~N (0,v
2) 

wit ~N (0,w
2)

it=wi+hi+ 

         uit+vit 

uit~N+(0,u
2) 

hi  ~N+(0,h
2) 

vit~N (0,v
2) 

wi~N (0,w
2)

Persistent 
Inefficiency 

Estimator 
E(ui |i1,…iT) None



(hi|it



Transient 

Inefficiency 
Estimator 

None E(uit|it) (uit|it

 

After Equation (2) is estimated using one of these three approaches, it is 

possible to calculate the level of energy efficiency. For the REM and TREM we 

compute the energy efficiency indicator as shown in Jondrow et al. (1982), 
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whereas for the GTREM we use the approach suggested by Filippini and Greene 

(2015) and based on Colombi (2010). 15   

The level of energy efficiency is:  

)ˆexp( it

it

F

it

it u
E

E
EF          (3) 

where Eit is the observed energy consumption and F

itE  is the frontier or 

minimum demand of the ith household in time t. An energy efficiency score of 

one indicates a household on the frontier (100% efficient), while non-frontier 

states, e.g. households and time periods characterized by a level of energy 

efficiency lower than 100%, receive scores below one.   

 

4. Results 

Table 3 displays the regression results for the three frontier models. The 

majority of the estimated coefficients and lambda16 have the expected signs 

and are statistically significant at the 1% level. Further, the magnitude of the 

coefficients is remarkably similar across all models.  

All models show a similar and relatively high price elasticity, and low 

income elasticity.17  Alberini et. al. (2011) found similar results. The low income 

elasticity of demand is likely due to the fact that in the model we are controlling 

for several variables related to income such as size of the home, the number of 

rooms and the presence of specific appliances. All of these coefficients are 

positive and strongly significant. As to the weather variables, the estimated 

heating and cooling degree day elasticity has the expected positive sign and is 

significant at the conventional levels. The coefficients on the presence of gas 

heating, a water heater or a dryer are likewise positive and significant.  

                                                 
15 All these measures are based on the conditional mean of the efficiency term. See also 

Greene (2002). 
16 Lambda (λ) is the ratio of the standard deviation of the inefficiency term to the standard 
deviation of the stochastic term and gives information on the relative contribution of uit and 

vit on the decomposed error term εit. In this case, it shows that the one-sided error 

component is relatively large. 
17 Given the use of a log-log functional form, most of the coefficients are elasticities.   
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Table 3: Estimated coefficients (t-values in parentheses) 

 REM TREM GTREM 

Constant 
9.921*** 
(67.84) 

10.054 ***  
(82.19) 

 9.365 *** 
(64.48)  

LNPEN 
-.587***  

(-70.24  ) 

-.582 ***  

(-78.19) 

-.553 *** 

(-60.70) 

LNY 
.018***  

(9.70  ) 

.018 ***  

(11.42) 

.042 *** 

(22.55) 

LNHDDCDD 
.152***  

(8.65) 

.165 ***  

(11.25) 

.212 *** 

(12.21) 

LNSIZE 
.020***  

(9.86) 

.019 ***  

(14.53) 

.019 *** 

(12.58 ) 

LNROOMS 
.440 ***  
(51.87) 

.435 ***  
(63.74) 

.533 ***  
(67.07) 

LNPERS 
.146 ***  

(39.69) 

.140 ***  

(47.48) 

.085 *** 

(24.40) 

LHOUSEAGE 
.040 *** 

(11.20) 

.004 ***  

(15.87) 

.052 *** 

(17.68) 

GAS_HEAT 
.122 *** 

(14.98) 

.113 ***  

(17.68) 

.111 *** 

(14.74) 

ROOMAC 
.040 ***  

(6.93) 

.041 ***  

(8.42) 

.041 *** 

(6.94) 

CENTRALA 
.084 *** 
(13.43) 

.083 ***  
(16.91) 

.098 *** 
(17.04) 

GAS_HW1 
.0821 ***  

(9.76) 

.077 ***  

(12.08) 

.065 *** 

         (8.53) 

GAS_DRYE 
.029 ***  

(5.57) 

.024 ***  

(5.93) 

.013 *** 

(2.62) 

DFL1 
-.028 *  

(-1.78) 

-.0458 *** 

(-3.95) 

-.043  

(-3.14) 

DFL2 
-.024 * 

(-1.60) 

-.032 ***  

(-2.83) 

-.005 

(-0.42) 

DFL3 
.008  

(.52) 

.002 

(.17) 

.021  

(1.56) 

Time dummies YES YES 
 

YES 

City fixed effects YES YES 
 

YES 

Lambda 
1.142 

 (0.017) 

.768  

(0.038) 

.811 

(0.046) 

  (variance of uit+vit) 
0.377 *** 
(0.005) 

0.374 *** 
(0.004) 

0.435 *** 
(0.005) 

w  
0.229 *** 

(0.001) 

0.193 *** 

(0.002) 

h   - - 
0.163 *** 

(0.007) 

Log Likelihood - 17616.8 -17523.9 -18225.5 
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The time dummies are jointly significant and suggestive of an overall  

declining trend.  The coefficients on the year dummies are not monotonic, 

implying that the combined impact of technical progress and other exogenous 

variables is non-linear. Moreover, the coefficients on the last two years of data 

are positive and offset the negative coefficients of the previous years.  

Table 4 provides descriptive statistics for the energy efficiency levels for 

the 40426 households in our sample based on equation (3). It shows that with 

the REM model the estimated mean and median energy efficiency are 75% and 

77%, respectively, whereas in the TREM these values are around 84%. We 

remind the reader that the REM provides information on the persistent level of 

inefficiency, whereas the TREM provides information on the transient part of 

efficiency.18  

 

Table 4: Energy efficiency scores 
 

 REM TREM 
GTREM 
Persistent 

GTREM 
Transient 

Min .29 .447 .801 .433 

Max .977 .945 .942 .931 

Mean .750 .837       .897 .824     

Median .77 .841 .898 .829 

 

Our preferred model is the GTREM because it estimates persistent as 

well as transient energy efficiency.  The estimated mean and median values of 

persistent energy efficiency from this model are approximately 90%, whereas 

the estimated mean and median values of the transient part are around 83%. 

These values are higher than their counterparts from the REM and the TREM 

models, and highly correlated with them. The coefficient of correlation between 

the individual household GTREM persistent components and the individual 

REM efficiencies is 0.93; that between the individual household GTREM 

                                                 
18 The REM does not prevent households from using less energy by adopting new technologies 

over time. This possibility is captured by the UEDT in the form of year dummies. Most of 
these year dummies have negative coefficients. 
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transient portions and the individual TREM efficiency is 0.98. Despite the 

different approaches and nature of the data, the average GTREM components 

are remarkably close to those in Filippini and Hunt (2015a), who estimate a 

residential energy demand stochastic frontier using state-level data from the 

US and report median values of the persistent level of energy efficiency between 

0.85 and 0.90. 

This and the other results reported in table 4 indicate that the US 

residential sector could save roughly 10% of its energy usage by correcting 

systematic inefficiencies and 17%  if it was able to eliminate transient 

inefficiencies.  It is interesting to note that these values in line with the 

assessment by McKinsey (2008), although they were derived in a completely 

different fashion, and that households appear to be attaining lower levels of 

efficiency in their day-to-day, short-run unsystematic behaviors, rather than 

in their systematic use of equipment.   

 

Table 5. CO2 emissions reductions associated with energy efficiency 

improvements. 

  

avg CO2 emissions 
reductions per 
household (kg/year) 

avg CO2-
equivalent 
emissions 
reductions per 
household 
(kg/year) 

avg non-baseload 
CO2 emissions 
reductions per 
household 
(kg/year) 

Pitt Lee REM     

5% improvement 398.33 400.16 583.8 

10% improvement 739.89 743.26 1000.47 

15% improvement 1018.92 1023.56 1377.84 

TREM    

5% improvement 346.12 347.7 466.92 

10% improvement 653.93 656.91 881.97 

15% improvement 899.53 903.64 1212.91 

GTREM (persistent 
component)    

5% improvement 319.65 321.11 430.73 

10% improvement 595.61 598.33 802.75 

15% improvement 637.7 640.61 861.88 

GTREM (transient 
component)    

5% improvement 350.95 352.55 473.28 

10% improvement 663.17 666.2 894.26 

15% improvement 929.63 933.88 1253.05 
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 Table 5 summarizes our calculations of the CO2 emissions reductions 

that would be realized assuming improvements in energy efficiency of 5, 10, 

and 15 percentage points, respectively, and using the different measures of 

efficiency.19  We use state-specific greenhouse-gas emissions rates associated 

with electricity generation from the US EPA’s eGRID, focusing on average CO2 

emissions rates, average CO2-equivalent emissions rates, and CO2 emissions 

rates for non-baseload generation, which at most (but not all) locales are higher 

than the average CO2 emissions rates because the fuel of choice of peakload 

generation is usually natural gas (which has higher emissions rates than 

nuclear, hydro, and renewables). 20   All figures can be scaled up the US 

economy through multiplying them by 129,950,000, the number of dwelling 

units in building with no more than 2 dwelling units in 2009.  

 

5. Conclusions 

We estimate the residential energy efficiency for a sample of US 

households using an energy demand frontier function.  We apply three 

alternate specifications that differ in the components the error term is broken 

into, and hence in whether they allow for transient and permanent parts of the 

(in)efficiency. All models control for income, price, heating degree days, cooling 

degree days and other socioeconomic variables.  

The three approaches—namely REM, TREM and GTREM—yield similar 

assessments of the current level of residential energy consumption in the 

sample. The mean and median values of the individual estimates of the  energy 

                                                 
19 For example, an improvement of 5 percentage points would bring a household from, say, 
0.75 to 0.80. When the energy efficiency improvement being considered would bring a 

household over 100% efficiency, we set it to 100%. We ignore any rebound effect associated 

with energy efficiency improvements. Our calculation assume that the energy efficiency 

improvements are attained only in the use of electricity.  
20 The eGRID documentation recommends using non-baseload emissions rates for calculations 

related to energy efficiency improvements. See http://www.epa.gov/cleanenergy/energy-
resources/egrid/ (last accessed 27 August 2015). 
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efficiency are similar, and suggest that there is considerable potential for saving 

energy and thus the associated CO2 emissions. The broadest of the three 

models we use (GTREM) actually suggests that the permanent component of 

the efficiency—which we may think of as associated with systematic equipment 

use and behaviors—is higher than the transient component. The former 

averages 90% in our sample, while the latter averages about 83%. Our 

calculations based on the CO2 and other greenhouse-gas emissions rates from 

electricity generation reported in the EPA’s eGRID show that even modest 

improvements in energy efficiency with respect to the 2009 baseline can 

significantly reduce energy use and CO2 emissions.  This is especially true for 

the transient part of inefficiency.  

These findings have important implications in terms of policy. Policy 

measures based on nudges, social norms (Allcott, 2011; Allcott and Rogers, 

2014), new information devices (Gans et al., 2013; Jessoe and Rapson, 2014) 

or information campaigns may attain improvements in the level of transient 

efficiency in the use of energy.  By contrast, improvements in the levels of 

persistent efficiency would be typically sought through energy efficiency 

regulations on homes and equipment, incentives promoting a change of habits 

in the use of equipment, and/or by offering incentives on the purchase of new, 

high-efficiency equipment (Alberini et al., 2015; Alberini and Towe, 2015) and 

structures, and/or by introducing. Our results underscore the promise of well-

conceived policies aimed at behaviors.  
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